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Abstract. A three-dimensional boundary layer calculation is carried out for the flow over a semi-infinite circular
cylinder which is placed at a small angle of incidence to an oncoming uniform stream. To elucidate the details of the
flow both a spectral and a finite difference method of solution has been employed. The results show that separation
of 'open' type on a body of revolution is characterized by a line of Goldstein singularities that originates,
spontaneously, at a finite distance from the nose of the body.

1. Introduction

In this paper we consider the three-dimensional boundary-layer flow over a semi-infinite
circular cylinder that is placed at a small angle of incidence to a uniform stream. The
small-incidence requirement allows a simple approximate form for the potential flow outside
the boundary layer to be adopted.

It is well known that for two-dimensional flow, the boundary-layer equations exhibit
singular behaviour at a point of zero skin-friction. This singular behaviour was first analysed
by Goldstein [1], by whose name it is commonly called, and completed by Stewartson [2].
Numerical studies, by Terrill [3] in particular, have confirmed all essential features of the
Goldstein singularity which is accepted as a mathematical manifestation of the large changes
that take place in the flow at separation. The role of classical boundary-layer theory within
the framework of high-Reynolds number flows has been elucidated by interaction theories,
of which a local notable theory is the now classical 'triple deck' (see, e.g., Stewartson [4],
Smith [5]). Boundary-layer separation in three dimensions is perhaps less well understood,
and one of the main aims herein is to illuminate certain aspects of so-called 'open'
separation.

Sufficiently far along the cylinder the flow may be expected to be largely independent of
features in the neighbourhood of the nose of the cylinder, and distance measured along it.
That being so, the equations decouple and the flow perpendicular to the generators of the
cylinder will terminate in singular behaviour of the Goldstein type. Two questions arise. The
first is 'what is the extent of the region of flow which is largely independent of the streamwise
coordinate?'. The second, related and perhaps more fundamental question, is 'does the
singularity in the solution which is expected far downstream emerge only in the asymptotic
limit, or does it appear spontaneously at a finite distance from the cylinder nose?'. There is
already evidence in favour of the latter scenario. First, note that Brown [6] has shown that in
conefield flow the solution at a separation line may exhibit singular behaviour along its entire
length from the apex. The numerical investigation carried out by Cooke [7] confirms that
singular behaviour of Goldstein type does indeed occur. Second, there is the analogy
between the problem under consideration and the unsteady two-dimensional situation of an
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infinite cylinder moved impulsively perpendicular to its generators. Lighthill [8] has
highlighted this analogy. He argues that as fluid is convected past the cylinder with
free-stream speed U. the position of the cylinder appears to change at a rate U, sin a, where
a is the incidence. The fluid may therefore develop a boundary layer, with an axial
component of vorticity, which grows causing flow separation, identified as cross-stream flow
reversal, first at the leeward generator and then further forward. Ultimately, the growing
wake becomes unstable and sheds vorticity. If the convective velocity along the cylinder
within the boundary layer were constant, which it cannot be since the no-slip condition must
be satisfied, then the analogy would be exact. The work of van Dommelen and Shen [9], and
Cowley [10] shows that for the unsteady two-dimensional problem the solution fails, in a
singular fashion, at a finite time. An exact analogy would therefore require the steady
three-dimensional boundary-layer solution to fail, similarly, at a finite distance from the
nose. Although, as we have indicated, the analogy is by no means exact our numerical
solution does exhibit a spontaneous eruptive singularity at a finite distance from the nose.
The structure of this singularity, as may be expected, is different from that in the unsteady
two-dimensional flow although we have been unable to provide a complete analysis of it.
Downstream from this initial singular point trails a line of singularities, of Goldstein type,
which is almost coincident with a cylinder generator. It is shown that this approaches the
position of two-dimensional separation far downstream.

The equations governing our three-dimensional boundary-layer flow are set out in Section
2, and in Section 3 we examine by partly analytic, and partly numerical means the flow along
the windward and leeward generators of the cylinder. The solution along the leeward
generator, in particular, reinforces the analogue idea between steady three-dimensional and
unsteady two-dimensional boundary-layer flows. The techniques adopted for the solution of
the three-dimensional boundary-layer flow are set out in Section 4. Two methods are
described there, one is a spectral method, the other a finite-difference method. Each has its
use, as explained, and both have been used, in different parts of the flowfield to build up the
picture of the flow properties that are described in Section 5. The results we have obtained
enable us to comment upon the independence principle. But our main conclusion is that flow
separation of the 'open' type on a body of revolution is characterized, in a three-dimensional
boundary-layer calculation by a line of singularities which commences spontaneously at a
finite distance from the nose of the body.

2. Problem definition and governing equations

We are concerned with the three-dimensional boundary layer that forms on a semi-infinite
circular cylinder of radius a whose generators are inclined at a small angle e to a uniform
stream of speed U.. With reference to the definition sketch, Fig. 1, dimensionless cylindrical
polar coordinates (r, 0, z) are introduced, where a has been chosen as a typical length scale.
For the potential flow outside the boundary layer we take as the velocity potential

=z-e(r+ ) cos ,(1)

where aU, has been taken as the scale for . This simple potential cannot describe the
complex three-dimensional flow in the nose-region of the cylinder, but it will be an
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U.

Fig. 1. Definition sketch. The line SS 2 is the line on which v/OaYly=O changes sign.

appropriate representation, for E 1, of the flow at large distances downstream, where our
major interests lie. If (U, V, W) are the dimensional velocity components in the cylindrical
polar coordinate system then we make these dimensionless by writing U = U,,u, V= EUv,
W= R '/2Uw* where Re = aU,/ is the Reynolds number. The boundary-layer equations
for the flow at the cylinder surface are, then, in the high-Reynolds number limit and with
r = 1 + R 2 y,

au Ou Ou 02u
u z + eV o + W* = - 2'az 8 ay 2

av Ov Ov a2u
u z + ev + w* - = 2E sin 2 + 02 (2)Oz 06 ay ay

au Ov 0w*
z + e-+=°dz 0E y

It is convenient to formally eliminate E from equations (2) by writing z =x/e, y =yl/,
w* = ViO, so that we have

du du _8u 02 u
U - + v - + w 2ax 00 y y2 '

dv dv dv a2v
u + v -+ wy =2 sin 20 +-, (3)

Xx ao ay ay3
au dv aw

- o + + =0,

as our governing equations. The boundary conditions for equations (3) require

u=v=w=0 on y=O, (4)

and
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u---l,v--- 2sin as y --.

In addition to the conditions (4), conditions at some initial station are required. This we take

to be x = 0 where the boundary layer is assumed to grow in the manner of the Blasius

boundary layer on a flat plate. Whilst this might be difficult to realise in practice, it does,

along with the potential (1), serve our purposes in the sense that flow conditions far

downstream will be largely unaffected by those in the nose-region of the cylinder. The

solution for u as x - 0 will be u = ub(7) where -7 = y/vx. This prompts a change of variables

from (x, 0, y) to (x, 0, 7) so that equations (3) now become, with w = x,

dOu Ou Ou 2u
xu x + xv d + (W- ) on - = 0

av av av a2v
xu + xv -e + (w - 71u) - = 2x sin 20 + (5)

ax do 2 d2
au av aw au

x +x +- d -2 = 0

The boundary conditions (4) now become

u=v=w=0 on 7=0, Vx>O,

u-1l,v-- 2 sinO as -- , Vx>O, (6)

with

u=ub,(7) at x=0,

where Ub is determined, by setting x =0 in (5)1,3, from

- 71UbU + WbU+ = Ub;, 7 ,U + W 0, (7)

with

Ub=Wb=O on -7=0, Ub= . 1 ash 0,

and a prime denotes differentiation with respect to 7. The remaining boundary condition, on

v at x=O0, is obtained by setting x=0 in (5)2. Inspection shows that vo ub, and the

condition (6) as ---> O gives

v = 2 ub() sinO atx=0. (8)

The equations (5), (6) and (8) are the forms of the governing equations that we have used

for numerical solution. Two numerical schemes have been adopted, one is a spectral method

the other a finite-difference method. Before describing these in detail, and the results
derived therefrom, we consider the flow conditions at the two generators which correspond
to the windward and leeward stagnation lines of the outer, inviscid flow.

3. Flow conditions at 0 = 0, r

Consider first the windward generator 0 = 0. For large x flow conditions may be expected to

become independent of x. Setting alax = 0 in equations (3) and expanding, close to 0 = 0,
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u = g(;) + 0(0 2) , v = 2f'( ) + 0(03), 1 = - V2f() + O(0 2), (9)

where ; = B2y, then the reduced form of (3)3 is satisfied identically at leading order, whilst

(3)2 and (3), give, at leading order, respectively

f"' +ff", _f' 2 + 1 = 0, f(O) =f'(O) = O, f'(oo) = 1,

g" +fg' = 0, g(O) = 0, g() = 1, (10)

where a prime denotes differentiation with respect to . These are the equations appropriate
to the stagnation line of attachment on an infinite yawed cylinder and, indeed, that for f is
simply the equation for two-dimensional stagnation point flow.

We may infer that ultimately, for large x, flow conditions along the line of attachment
become independent of the coordinate x. The same is not true at the leeward stagnation line
however, where the flow has much in common with the flow at the rear stagnation point of
an impulsively moved cylinder in two dimensions. Suppose that close to the leeward
generator 0 = rT we write

u = u(x, y) + O( - 0) 2 , v = (r - )v,(x, y) + O(r - 0) 3 ,

w = w(x, y) + 0( - 0)2, (11)

then, at leading order, equations (3) give

aut au, a2u,
Ul x + Wl ay - ay2

2

vl 2+ W =2v -- 4,12Ulax W a
l

ay y
2

au aw,l

ax a-v+ ay =0.

If we proceed as at the stagnation line of attachment, and set a/ax 0 O, then (12)2,3 are the
equations for two-dimensional rear stagnation point flow for which there is no solution.
Guided by the work of Proudman and Johnson [11] for the unsteady two-dimensional
problem we may suppose that in the present case the flow at the rear stagnation line divides
into an inner viscous layer and an outer region of inviscid, rotational flow as x - oo. For the
outer layer we introduce a new coordinate 5 = y e-Ax, where A is a constant, and variables
wo = wI ex, v = v, uo = u so that as x o equations (12) become

(w - Au 0o) a= 0,

(wo - Au 0 ) V --0 = -4, (13)

-A6 auVo + -IO = 0.

If auOI/a 0 o then (13), gives w = Au o and (13)2 then gives vo = 2, so that finally from
(13)3 u = 2/A which determines A = 2 if the solutions are to match with the outer potential
flow. With u =-1 our procedure is inconsistent and all we have done is recover the outer
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irrotational flow solution close to the boundary. If duo/a = 0, so that u0 = 1, equation (13),
is satisfied and writing v0 =f,(e), w0 =f0 (C), where a prime now denotes differentiation with
respect to , equation (13)3 is satisfied identically whilst (13)2 requires

-Afo _- f2 f o+f t = 4. (14)

The solution of (14) which satisfies f(0) = 0, and decays exponentially as -- o, is

4
fo = 2 - c (1 - e-C), (15)

where c is an undetermined constant. Note now, from (12) and (15), that as y -->0,

ur- 1, v/---> -2(7r - 0), (16)

which means that the inner viscous layer that is required to satisfy the no-slip condition is
identical in structure with that at the windward stagnation line.

In order to test the form of solution for large x, on both the windward and leeward
stagnation lines, equations (5) have been integrated along each of these lines, with a factor
of 0 or rr - 0 removed from v as appropriate, using a finite-difference method adapted from
that described below for the three-dimensional calculation. The results are shown in Fig. 2.
We note how rapidly 0 -1 av/ayly and aulayly=0 approach constant values on the windward
stagnation line. By contrast the corresponding quantities on the leeward stagnation line,
namely (r - 0)-1 avlayly=0 and au/ayly=o, approach their terminal values more slowly but
they do, as predicted above, approach the same values as for the windward stagnation line.
The particular quantities shown in Fig. 2 might suggest that sufficiently far from the nose of
the cylinder flow properties are becoming independent of the coordinate x. Such a
conclusion is, however, misleading since as we have seen above, the viscous layer on the
leeward stagnation line is embedded within a region of inviscid rotational flow whose

Fig. 2. Variation with x of aulay and 0 -1 avlay (windward) or ( - 0)' avlay (leeward) at y = 0 on the windward
-- , and the --- leeward, generators.

0.0 0.5 1.0 1.5 2.0
x

to
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thickness is increasing dramatically as x increases. We shall return to the dependence of flow
features upon x in our discussion below on the results of our three-dimensional calculations.

4. Numerical methods

To solve equations (5) subject to the conditions (6) and (8) we have adopted two methods,
namely a finite-difference method and a spectral method. Each has a role to play, as we shall
indicate, and each is described separately below.

4.1. Finite-difference method

In essence, our finite-difference method integrates equations (5) along the generators of the
cylinder, from some initial station x0 , starting with the windward generator 0 = 0 and at the
end of each x-sweep advancing to a neighbouring generator in increments of 0. If the
integration commences at x = 0 then the Blasius solution of the ordinary differential
equations (7) is required.

In order to implement the scheme outlined above we must first establish the solution on
0 = 0. To enable this write

u = u(x, 71) + O(82), v = Xi(x,q) +O(03), w= w(x, 7) + 0(02), (17)

to give, upon substitution into (5), for the leading terms

au- au a2u
xa + ( - u- )- 4+ ,

2 ---- (m)

O -2 i 4x (18)

aux aw au-

We remark that it is these equations, and a companion set appropriate to 0 = 'r, that have
been integrated to obtain the results shown in Fig. 2. The finite-difference representation of
(18) which is adopted employs backward differences in x and central differences in 7/. With
reference to Fig. 3 the point (i, j) refers to the point whose coordinates are {(i - 1) Ax,
(j - 1) &r}; and we adopt a standard suffix notation such that uiij represents the value of 
at that point. The set of equations (18) is solved iteratively and quasi-linearization must be
employed so that, for example, the term u auOaOx is written as

au- ~au- au oau
ax= ax u ax- -ax, (19)

where a tilde denotes the value of u from a previous iterate. The terms u au/al and v2 are
similarly quasi-linearized. In the finite-difference representations the quasi-linearized form of
equations (18)1,2 are evaluated at (i + 1, j), denoted by 0 in Fig. 3, whilst (18)3 is evaluated
at (i + 1, j- ), denoted by x in Fig. 3. The finite-difference representations of (18) may
then be written as
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i+ i+

i+l

j+1

i-i

dx

Fig. 3. The computational mesh for the calculation of the initial solution along the windward generator.

aji+1,j+ + bijUi+, j + Cjui+l,j_ = dj

Ajuv-Ui+l + Bji+l,j + CjQi+,j-l = Dj , (20)

Wi+l,j - Wi+I,j-1 = ej

where j = 2 to n - 1, so that the assumed outer edge of the boundary layer is 0 = (n - 1) a.
The solution strategy we have adopted to advance from station i to station i + 1 is as

follows. Estimates of , at i + 1 are made by extrapolation from the solution at previous
stations. From these a first estimate of w is made from (20)3. Equation (20),, which is the
finite-difference representation of the quasi-linearized form of (18),, is then solved iterative-
ly to obtain a partially converged update of ; a partially converged update of is then
obtained by similarly solving (18)2 in an iterative manner. Equation (18)3 then gives a new
estimate of w and the whole process is repeated until converged values of 1a, and w are
obtained according to some pre-set criterion.

With the solution along the generator 0 = 0 determined, as described above, we can now
advance to the next generator = o0, and integrate equations (5) along it. Quasi-lineariza-
tion, as in (19) is again employed, and the finite-difference representation again uses central
differences in 77, with backward differences in 0 and x. Thus, the quasi-linearized forms of

(5),2 are evaluated at (i + 1, j, k + 1), denoted by 0 in Fig. 4, whilst (5)3 is evaluated at
(i + 1, j - , k + 1), denoted by x in Fig. 4. The finite-difference representations of (5) may
be written, in a similar manner to (20), as

aji+l,j+lkl + bi+ljk+l + ilj-l,k+ C ji+ l =,k+ d

Ajiv+l,j++l + Bjvi+l,j,k+l + CjVi+l,j-l,k+l = Dj, (21)

Wi+l,j,k+l - Wi+l,j-l,k+l = ej ,

where again j = 2 to n- 1. The solution strategy is as for equations (20), with initial
estimates for u, v at (i + 1, j, k + 1) being given from the previously determined values at
(i, j, k), (i + 1, j, k), (i, j, k + 1). For each of the sets of equations (20)1,2, (21)1,2 advantage
is taken of the tridiagonal structure of the matrix of coefficients via the Thomas algorithm.
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617

3+1

Fig. 4. The computational mesh for the three dimensional calculation.

The finite-difference method described above does not allow us to compute the boundary
layer over the whole of the cylinder surface for the following reason. Consider, in Fig. 1, the
line SS 2. If this line is denoted by 0 = ,(x) then for 0 < 0, av/aql7,=o > 0, whilst for 0 > 01,
av/aqIl,=o <0. The onset of this line at the point S1 can be seen in Fig. 2. This is the point at
which (r - 0)-1 av/ayl y= changes sign in that figure. This change of sign in the azimuthal
shear stress component implies a reversed flow close to the boundary for 0 > 0, which, in
turn, means that in any satisfactory computational scheme conditions on the leeward
generator cannot be ignored. It is, therefore, not surprising that our finite-difference scheme,
as outlined above, fails to penetrate this region of reversed flow. More complex finite-
difference schemes may be constructed, but to overcome this particular difficulty we have
adopted a spectral method described in the next sub-section.

4.2. Spectral method

To take account of conditions on 0 = 0, r the components u, w are expanded as even
functions of 0, and v as an odd function of 0, so that

U(X,, ) = UO(X, )-+ Un(X,q) cos n ,
n=l

v(x, /, 0) = ~ v (x,,) sin no, (22)
n=l

W(X, o 0) = wo(x, ) + E W (X, 71) COS n.
n=l

If we now substitute (22) into the governing equations (5), then the terms which are
independent of 0 in (5)l and (5)3 give

du o auo d2Uo
XUo + (W - t17UO) a7- 2

a a Uj

j=1~~~~~~

353
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aOUo - Uo + aWo =0, (24)
ax 2 &, d

respectively. Meanwhile, equating coefficients of cos kO in (5)1,3 and sin kO in (5)2, where k

is an integer, leads to the following sets of equations for uk, vk and wk, k 1,

aOuk + Uo 1 auk uo 0 2Uk
X Ux + Uk ox) + (w + (k k) 

2 1 {XUk+j aX + (WUkj -27uk+j) -- -jxv k+jUj (25)
j=l a

-- 1 au,
+i {XUlk-jl ax + (Wlkjl - ik-j) -sgn(k -j)xlkjlyj =0,

jzk

XUo Ox + (W - O) - 2 - 2 2k

+ 2{xj+k avix + (j+k - 2 u + (k + )xj+kj (26)
+2 i xuj+k -q+(j+k)

+ {XUlk-l axV + (Wlk jl- 2Uk-ji) -jlk-jlj j=1 axq+ k . 0
jfk

where /ij is the Kronecker delta, and

auk 1 Ouk Owk
Xx - 2l + d + kxvk = O. (27)

The boundary conditions (6) and (8) now require

Uk=Vk = Wk=O on *7=0, x>0, k0O;

u0 - 1, u1-- 0, v, --> 2, Uk,, Vk>O as -->X, x>0O, k>l; (28)

UO=ub(q),v1=2ub()I) , U1=Uk=Vk=O at x=0, k>l.

To solve equations (23) to (27) we again use a discretization, in this case with both x and */
derivatives represented by central differences. The continuity equations (24) and (27) are
evaluated at (i + , j -I), denoted by + in Fig. 3, whilst the momentum equations (23),
(25) and (26) are evaluated at (i + , j), denoted by E[ in Fig. 3. Each of the series in (22) is
truncated at n = N, and the discretization procedure described above results in a total of
3N +2 non-linear algebraic equations for the unknown quantities u, WO, uk, k, Wk,
1 - k - N. Whilst, in principle, these 3N + 2 equations may be solved simultaneously using
Newton's method, we have chosen to use an iterative method, not dissimilar to that
employed in the finite-difference method of Section 4.1, as follows. To determine the
solution at station i + 1 the unknowns are first estimated from previous stations by
extrapolation or, when i = 1, by simply taking the initial solution as the estimate. The
non-linear equation (23) is then solved for u0 using Newton's method, which is equivalent to
our formal quasi-linearization in Section 4.1, with the linear equations (24) for w0 and (25),
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(26) and (27) for uk, ok and Wk (1 < k - N) being solved consecutively. In these equations all
coefficients and 'forcing' terms are evaluated using the most recently updated values. As with
the method described in Section 4.1 the coefficient matrix is tridiagonal, and can be
efficiently inverted, the major computational task in this method is evaluating the summa-
tions in (23), (25) and (26). Iterative sweeps are made through equations (23)-(27) until the
solutions for u0 , w0 , uk, vk, Wk (1 < k < N) are deemed to have converged according to some
pre-set criterion.

This spectral method, perhaps more properly described as a hybrid method, overcomes
the difficulty we have highlighted with the finite-difference method and, with reference to
Fig. 1, enables us to determine the solution, for all 0, beyond the point Sl, as long as the
solution remains regular everywhere. However, as we shall see in the next section, the
solution develops a singularity at a finite value of x, say x, beyond which the method of this
subsection cannot penetrate. Beyond x5 the solution may be developed, in 0 < 0,, using the
finite-difference method of Section 4.1, to yield valuable information in the region x > xs .

5. Results

We begin our discussion of the properties of the three-dimensional boundary-layer flow with
results obtained from the spectral method described in Section 4.2. The integration
commences at x = 0 where we have u = ub(77), v = 2Ub(7) sin 0. We choose 77 = 10 which has
proved an adequate representation of the outer edge of the boundary layer where we insist
that jau/ay] + av/layl < 10- 4 throughout our calculations. The step lengths &1 = 0.1, 8x =
10 - 3 were fixed and the number of terms in the series representation taken as N= 16
initially. More terms may be added in order to maintain a given degree of accuracy, which is
monitored by inspection of the magnitude of the last term of each series. Specifically we have
required that max{uN, VN, WN} < E1 where e1 = 10- 5 up to x = 0.395, at which point N = 256.
This value of N was fixed up to x = 0.401, which implied e, = 5 x 10- 3 , whilst for the last
step N was increased to N = 300 in order to maintain this order of accuracy.

In Figs. 5 and 6, respectively, we show the development of the shear stress components
au/layly=o and avlayly=o. The streamwise component remains positive as might be expected

1.0-

0.75-

o

'\ 0.5-

0.25-

0.0-

b

p 25 50 75 100 125 150 175

e

Fig. 5. The variation of au/lOyy=o as a function of 0 for various values of x: x = (a) 0.125, (b) 0.250, (c) 0.375, (d)
0.402.
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N

Fig. 6. As Fig. 5 for a/ayly= 0.

since the cylinder is almost aligned with a uniform flow. However, the transverse com-
ponent, whilst initially non-negative, eventually changes sign in the neighbourhood of the
leeward stagnation line. This is consistent with the results shown in Fig. 2, and we confirm
that the point S1, and the curve 0 = 0,(x) on which av/ayly=o vanishes, is in no way
exceptional.

Evidence for singular behaviour is provided in Fig. 7 which shows the development of the
viscous displacement velocity wd(x, 0). This displacement velocity is defined as

wd = lim {x-1 2(w + 2xv cos 0)} , (29)

and is clearly exhibiting singular behaviour. A careful analysis of the structure shown in Fig.
7 shows that max(wd) is increasing as (, - X) - 31 4. This is clearly demonstrated in Fig. 8
where {max(wd)}-413 is plotted as a function of x, to reveal a linear behaviour as
x--> = 0.4054. An apparently similar singularity has been encountered by Goldstein and
Leib [12]. It is obvious from Fig. 7 that in order to maintain good resolution in 0, as x is
approached, it is necessary to increase N, the number of terms in the series, as indicated

nr_

70-

60-

50-

40-

30-

20-

10-

0-
25 50 75 ' ' 100 125 1525 50 75 100 125 150 - I

0

Fig. 7. The variation of the viscous displacement velocity wd as a function of 0 for the x values 0.250, 0.375, 0.395,
0.400, 0.401, 0.402. Increasing x corresponds to increasing max(wd).

O j
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u.z-

0.2-

0.15-

0.1-

0.05-

0.0
0.1 U.15 U. u.4D U.j U.JD u.4

X

Fig. 8. A plot of Wd4/3 as a function of x. The broken line is a straight line of best fit.

above. It is the displacement velocity that 'drives' the displacement surface. If we represent
the latter by 8(x, 0) then

a a
ax + 2 sin 0 f =Wd (30)

where Wd is given by (29). The solution of this equation is presented in Fig. 9. We note that S
does not appear to be unbounded at the singular point although its -derivative is. Such
behaviour is consistent with that we have predicted for wd.

Further evidence for the eruptive nature of the singularity which we have uncovered is
given in Fig. 10. There we show the cross-section of the stream-surfaces in the boundary
layer in a plane x = constant. These are calculated from the equation

dy wdy 7 (31)
dO in the figure itself the boundary layer has been magnified by a factor O(R' Distortion

and in the figure itself the boundary layer has been magnified by a factor O(R 12). Distortion

t0

0

Fig. 9. As Fig. 7 for the displacement surface 8. Increasing x corresponds to increasing max(S).

111.1- 1.111- 11- 1- ... ... 11 .............. ''I
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Fig. 10. A cross section of the stream surfaces in the boundary layer, which has been radially magnified by a factor
O(R ~2).

of the cross-flow streamlines in the neighbourhood of 0 = 0 reveals the erupting singular
behaviour.

From these calculations using our spectral method we show, finally, in Fig. 11 surface
streamlines which are calculated from the equation

dox duodlay (32)dx - Ou/y lye0 

x

0

Fig. II. Surface streamlines for 0 -_ 0 - r calculated from equation (30). The broken line represents the curve S S2
of Fig. 1. The initial singularity is shown as e.
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Included in the figure is the line = O(x) shown in Fig. 1 as S1 S2 . As x5 is approached the
surface streamlines converge onto the singular point, which is to be expected if fluid is to be
provided to supply the massive outflow depicted in Fig. 7. The singular point itself lies close
to but not on the curve 0 = 0(x) and our best estimate of its position is at the point
x, = 0.4054, 0, = 110.1 °. We note that neither component of skin friction vanishes at this
point.

As we have already remarked, the appearance of a singularity in the solution of equations
(5) precludes the possibility of our continuing the solution beyond x = x5 using the spectral
method. However, Fig. 11 shows that the solution has been continued into the region x > x,,
0 < 0,. This continuation has been achieved by employing the finite-difference method of
Section 4.1, with initial data provided from the solution at x = 0.4. To maintain the high
accuracy that characterizes our solution for x <x5, we have taken x = 10 - 4 , 80 = IT/7200.
The solution calculated by this method in x > x, terminates in a line 0 = O5 (x) at which both
components of shear stress dulay, avlay, at y = 0, exhibit singular behaviour in the sense
that their 0-derivatives are unbounded. Neither component vanishes at this line but it
appears the component of shear stress normal to it does. The lines 0 = 0, and 0 = 0, are
almost coincident, and almost coincident with a generator of the cylinder. The singularity in
the shear stress is of a square-root nature, so that beyond x5 our solution terminates in a line
of singularities of the Goldstein type. A further discussion of the structure of the solution in
the neighbourhood of this line is given in Appendix A. In Figs. 12 and 13 we show the
components u/ayy=o and av/ayly=o at various stations. The developing singularity, as
0 - 0t is in evidence, but also it is clear that the solution is virtually independent of x in this
region. From our solution we have estimated the singular line 0 = 0,(x) and this is shown in
Fig. 14 together with the line 0 = O,(x). For two-dimensional steady flow past a circular
cylinder the boundary-layer solution fails in the manner of a Goldstein singularity at
0 = g = 104.4° . This quantity is also shown in Fig. 14 and appears to be an asymptote for the
curves 0, and 0,,. We may conclude that beyond the point at which the three-dimensional
boundary-layer solution fails the attached boundary layer, that is for 0 < ,,, is virtually
independent of the streamwise coordinate x. For 0 > 0,, this cannot be the case, and we
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0.8-

0.7-

0.6-

so 0.5-

,o 0.4-

0.3-

0.2-

0.1-

0.0

Fig. 12. As Fig. 5 but with (a) x = 0.45, (b) x =0.55, (c) x = 0.65. For x >0.65 the curves are almost
indistinguishable.
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o

Fig. 13. As Fig. 6 but with (a) x = 0.45, (b) x = 0.55, (c) x = 0.65. For x >0.65 the curves are virtually
indistinguishable.

103-

0,.

0,

x

Fig. 14. The variation with x of 0, and O,. The broken line shows the position of the Goldstein singularity in
two-dimensional flow, the initial singular point is denoted by .

expect a growing wake region to continue its development in the manner suggested by our
analysis of Section 3 on the leeward generator.

6. Conclusions

A three-dimensional boundary-layer calculation on a yawed body of revolution has provided
a fundamental insight into boundary-layer separation of 'open' type. In particular it has been
shown that the solution on a cylinder of circular cross-section, at small angles of yaw,
develops a singularity at a point, that we interpret as the point at which the flow first erupts

I
>1

i
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from the boundary layer to form a streamwise vortex configuration. There is an analogy
between the flow under consideration, and the unsteady flow when an infinite cylinder moves
impulsively in a direction perpendicular to its generators. The analogy would be complete if,
in equation (3)2, the convective velocity u 1, in which case the singular behaviour would
require max(wd) (xs-X)-7/ 4 as xx s . However, as we have seen, (xs-X)-3 / 4 is the
appropriate singular behaviour in the three-dimensional case that has been obtained. Beyond
this initial singular breakdown the solution of the boundary-layer equations continues to fail
along a line, almost coincident with a generator of the cylinder, perpendicular to which the
surface shear stress vanishes. This stress component vanishes with a square-root singular
behaviour, and so the line along which the solution fails is essentially a line of Goldstein
singularities. As noted by Cousteix [13] the appearance of a line of singularities in a
three-dimensional boundary layer calculation is not unknown. Our calculations are con-
sistent with the reasonable hypothesis that this singular line is asymptotic to the generator of
the cylinder at which the boundary-layer solution fails in two-dimensional flow. A major
conclusion of this investigation is, therefore, that separation of 'open' type on a body of
revolution is characterized by a line of singularities of the boundary layer solution. This
appears to contradict the views of Maskell [14] (see Crabtree et al. [15]) that such a
separation line will be a line of ordinary points. A further conclusion concerns the
development of the solution beyond the point x = xs of the initial breakdown. There it has
been shown that between the line of attachment on the windward stagnation line, and the
line of separation characterized by Goldstein singularities, the flow conditions are virtually
independent of distance measured along the cylinder.This provides some basis for the
so-called 'independence principle' that has been widely adopted for yawed configurations.

Finally, we acknowledge that the appearance of singularities of the type under discussion
are an artefact of an imposed outer flow, and may lead to only an approximate representa-
tion of a high Reynolds number flow. A possible resolution of this difficulty may be found in
a viscous/inviscid interactive approach.
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Appendix A

Conditions at the separation line

In this appendix we model the conditions at the separation line which, as we have seen in
Section 5, is characterized as a line of singularities of the type discussed by Goldstein for
two-dimensional flow. The line is almost a straight line, coincident with a generator of the
cylinder. Along this there is a favourable pressure gradient in the direction of x increasing,
whilst perpendicular to it, in the direction of 0 increasing, the pressure gradient is adverse.
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For simplicity we assume that the separation line is a straight line, 0 = 0s, and at a point
(x0, 0s) on it the pressure is given by

p = const. -p(x - xo) +p,(O - 0) + (33)

where the constants P0, p, >0. At the separation line the shear stress component
perpendicular to it vanishes, but the component along it does not. So, at (o, Os), we have

= azy + a4Y 4 + · · · ,

u = by + b2y2 + by 4 + '' , (34)

where the coefficients ai, b are, in general, functions of x, evaluated at x = x0 in (34). If we
now introduce the new variables

O~ = (, Y (35)-01(35)

and write

u = \@b 1O17i1 + 2 U ,

v =20 2V, (36)

1V

then the boundary-layer equations (3), in which the pressure gradient is calculated from
(33), and not neglected in (3)1, become, with / = dbaldx,

-NF au1 a b aU
0(/ ' +1 2010)(V ab1 1 x v 71 2(20_ auvI

a 2 C\8 h 0 1 2j'~h

3 1 a 1 v - O1 -- "'1

020
= P0 + '"' + ---T, (37)

20(V2b 1 + 2U)x +V 7-1 - 2 V 1-0-) +W a=V -P + '" (38)
an f Y 7 1 a7 7

3+ 04a aV - a17 aw
2V/610171 + 40~+0 12 2V- 01 + 0.W =(39)ax aq MI a77%

We now expand the reduced velocity components (36) as,

U = UOg;(%1) + Olu g(70) + Ou 2g(, 1 ) +.,

V= vof(7) + Ovf( 1 ) + v 2f(7 1) + ... , (40)

W= v0 (3f0 -7 11f) + v1 O1(4f, -7fl) + v2 0(5f 2 - 1 f) + ,

where a prime denotes differentiation with respect to 7, and u, v are constants.
If we now introduce (40) into (38) we have, at 0(1),
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fo - 3voofo + 2vofo =Pl,

with solution that satisfies the no-slip condition at q1, = 0, and matches with (34)1,

fo0 Pl1 3 (41)
-- 6vo 1 ,

provided that a2 =pl. The terms 0(01) in (38) now give, as equation for f,

f - o(71 f; f; - 5fof + 4 foi) = ,

which, with fo given by (41), has the solution satisfying no-slip

i = a1 71 , (42)

where al is a constant which will depend, in particular, upon conditions for 0 < 0.
The results obtained so far, perhaps unsurprisingly, indicate that two-dimensional effects

dominate. Consider next equation (37). The terms at 0(1) yield

+,, ½b a, a 2
go + Pl71 (2go -7l go) - + blU 1l

the solution of which, that satisfies no-slip and matches with (34)2, is

Po + E nX+5 (43)

provided that b2 = -P0 . In order to determine gj, we must first know f2. This is, again, given
by the corresponding two-dimensional result, since (38) clearly shows that only at O(03 ) do
we deviate from that, which is

2 1 2
f2 = °2 1 -- ai'5O1

where a2 is a second arbitrary constant that depends upon conditions away from the
separation line. The terms (01) in (37) now give, for gl,

m 3 _ 3 2ba 2 2 2 1a 1PO 3 n +5
g -Pl(ll-3 1gl)- Vu 1 U71 " f1 + 1 {rna /n)+y '

where the constants f3n, yn are given in terms of the known constants 8n of (43). The solution
of this equation for gl, which satisfies no-slip, is

gl 1 1 + Pfin0 + nl 1 n+5 (44)
UIP1 n=O

where the constants /3,, n are known.
Now, the leading term of (44) will contribute, to u in (34)2, a term

2V2vlalpo0 2 y,

P1
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first as f contributes a term 0(02y) to . So, we may conclude that the square-root
singularity which appears in the transverse component of shear stress is also present in the
longitudinal component provided both a and po are non-zero.
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